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An example
Alice and Bob play the following game: Alice goes first and
chooses A, B or C. If she chose A, the game ends and both get 0.
If she chose B, Bob can either choose D resulting in utilities of 2
and 3, or he can choose E, resulting in utilities -2 and 2. If Alice
chose C, Bob can either choose F resulting of utilities of 3 and 5,
or G, resulting in utilities of -6 and 6. We can summarize this
game with a rooted, directed tree as follows:

Alice

(0, 0)

A

Bob
(2, 3)D

(−2, 2)E

B

Bob
(3, 5)F

(−6, 6)G

C



Example: Solving games using backward induction

If Bob has to choose between D and E, he will choose the outcome
with highest utility for him, namely D, and if he needs to choose
between F and G, he will choose G. So when Alice has to choose
between A, B and C, she is choosing between utilities 0, 2 and -6,
so she will choose B. The optimal strategies are for Alice to choose
B and then for Bob to choose D, resulting in a payoff of 2 for Alice
and 3 for Bob.
There is an outcome which is better for both Alice and Bob: If
Alice chooses C and Bob F, Alice’s payoff is 3 > 2 and Bob’s
payoff is 5 > 3. The problem is that if Alice chooses C, Bob will
chose G for a payoff of 6 > 5. But suppose we change the payoff
(−6, 6) to (−6, 4): are we hurting Bob? No! Now the optimal
strategy for both players leads to the optimal payoff (3, 5).
Surprisingly, lowering one’s payoffs in a sequential game can lead
to a better outcome.



Directed rooted trees

Definition. A rooted tree is a directed graph with a distinguished
vertex, the root, which is connected to every other vertex with a
unique directed path.
Vertices with no arrows coming out from them are leaves.
Leaves will encode payoffs, and the other vertices will be labeled by
the players of the game.
Edges coming out of a vertex will be labeled by the possible
decisions at that stage of the game.
The rank of a rooted tree is the maximum of all lengths of directed
paths in the tree.



Example: “The hungry lions” game

A pride of lions consist of a highly hierarchical group of lions.
When prey is caught, the top lion eats first, followed by lion
number two, and so on. Once an especially large and tasty prey
was caught, so large and tasty that it would be impossible for lions
to stop eating it, and they would fall asleep. If a lion falls asleep,
he will be eaten by the lion immediately below him in the
hierarchy, but not by any other lion. This lion will then also fall
asleep. Should the top lion eat the prey?
Suppose there are n lions. If presented with the choice of eating
the prey, should lion number n eat it? Yes, no one will bother to
eat it. Should lion n− 1 eat? No! It would fall asleep and be
eaten. Should the n− 2 lion eat? We know that lion n − 1 won’t
eat it, so it is safe for it to eat and fall asleep, etc. So the top lion
should eat if and only if n is odd!



Cournot duopoly revisited: the Stackelberg model

Two firms produce an identical product. Unlike in the Cournot
model, the second firm will choose to produce q2 after the first firm
produces q1. As before, the cost of production per unit is denoted
c , and the price per unit of product is given by p = a− b(q1 + q2).
The second company’s best response to company 1 producing q1
units is BR2(q1) = (a − c)/2b − q1/2 resulting in total production
of q = q1 + q2 = q1 + (a − c)/2b − q1/2 = (a − c)/2b + q1/2.
The first firm would then make a profit of

P(q1) = (p − c)q1 =

(

a − b

(

a− c

2b
+ q1/2

)

− c

)

q1 =
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2
−

q1b

2

)

q1 =
b

2

(

a− c

b
− q1

)

q1

and P(q1) is maximized when q1 = (a − c)/2b.



The second firm will produce q2 = BR2(q1) =
(a − c)/2b − q1/2 = (a − c)/2b − (a − c)/4b = (a − c)/4b, for a
total production of 3(a − c)/4b which is higher than the Cournot
Duopoly production of 2(a − c)/3b.
The profit of the first firm is
(

a −
3

4
(a − c)− c

)

a− c

2b
=

(a − c)2

8b
which is higher than

Cournot profit of (a − c)2/9b.
Moving first (=setting production levels first) gives an
advantage.



Solving strictly competitive games with no chance moves

We now study more familiar games, similar to and chess and
checkers.
In these games two players take turns making moves, until the
game comes to an end and the outcome of the game is announced:
either player I wins or player II wins or there is a draw.
(We shall call the player who moves first ”player I” and the other
player ”player II”.)
Definition. A strictly competitive game is a 2-player game in
which for any two outcomes (u1, u2) and (u′1, u

′

2), u1 > u′1 implies
u2 < u′2.
Since the preferences of player II in a strictly competitive game can
be inferred from the preferences of player I, we can, and shall, keep
track only of the outcomes of player I, e.g., the outcomes in a
game of chess can be thought as being “player I wins”, “the game
is drawn”, and “player I loses”.



Subgames and subtrees

Definition. Let T be the tree associated with a sequential game
G . For any vertex v in T we can construct a rooted subtree T ′ of
T whose root is v , whose set of vertices V ′ consist of all vertices
in T which can be reached by a directed path starting at v , and
whose edges are all edges in T connecting vertices in V ′. Such a
subtree defines in turn a new game, the subgame of G starting at

v .



Example: 2-pile Nim

There are two piles of stones, Alice and Bob take turns to make
moves, each move consists of choosing a pile and taking way any
number of stones from it. The person who takes the last stone
wins.
Suppose that the piles have initially 5 and 8 stones and Alice goes
first. Show that she has a strategy which ensures her victory.
Suppose that the piles have initially 7 stones each and Alice goes
first. Show that Bob has a strategy which guarantees him victory.
(Hint: analyze the game which starts with one stone in each pile.)



Zermelo’s theorem

Definition. A sequential game is finite if its associated tree is
finite.
Theorem.(Zermelo’s theorem) Consider a finite, sequential game
(with no chance moves) and let S the set of outcomes of the
game. For any S ⊆ S either

(a) player I can force an outcome in S , or

(b) player II can force an outcome not in S .



Proof. Let T be the tree of this game; we proceed by induction on
the rank r of T . If r = 1, T consist of a root and leaves only and
either player I can choose a leaf with outcome in S or she is forced
to choose a leaf with outcome not in S .
Assume now that r > 1 and that the result holds for all games
with trees of rank less than r . Let G1, . . . ,Gn be the subgames
resulting after player I makes her move, and let T1, . . . ,Tn be the
corresponding trees. Note that the ranks of T1, . . . ,Tn are less
than r , and we may apply the induction hypothesis to each of
G1, . . . ,Gn. We have two cases: either

(i) Player II can force an outcome not in S in each one
of the games G1, . . . ,Gn, or

(ii) for some Gi , player II cannot force an outcome not
in S .

If (i) holds, conclusion (b) follows, while if (ii) holds player I has a
strategy which starts with a move to game Gi which forces an
outcome in S .



Strictly competitive, finite, sequential games have a value

Let the outcomes of such game be u1 < u2 < · · · < uk where <
denotes player I’s preference.
For any 1 ≤ i ≤ k , let Wi = {ui , . . . , uk} and Li = {u1, . . . , ui}.
There exists a largest 1 ≤ i ≤ k for which player I can force an
outcome in Wi ;
player I cannot force an outcome in Wi+1, so player II can force an
outcome in Li .
We conclude that player I has a strategy that guarantees her at
least ui and player II has a strategy that guarantees him that
player I will not do better than ui .



Chess-like games

Corollary. In chess, either white can force a win, or black can force
a win, or both sides can force at least a draw.
Proof. Here S = {white wins, draw, black wins}. Apply Zermelo’s
Theorem to S1 = {white wins} and S2 = {white wins, draw} and
deduce that

(a) either white can force a win or black can force a win
or a draw, and

(b) either black can force a win or white can force a win
or a draw.

So we either have a strategy which guarantees victory by one side,
or, if this fails, both sides have a strategy that guarantees at least
a draw.



Chomp!
A game of Chomp! starts with a rectangular array of pieces and
two players alternate taking turns. A turn consists of a player
choosing a piece and removing that piece and all other pieces
above or to the right of the chosen piece. The player who takes
the last piece loses the game.
Theorem. The player who goes first has a strategy which
guarantees her victory.
We use the following strategy-stealing argument.
Proof. Assume that the Theorem fails; Zermelo’s theorem implies
that the second player has a strategy which guarantees him victory.
If the first player chooses the upper-right piece, there is a choice of
piece P for the second player which is the first step in a winning
strategy. Let the first player then start with a choice of P , and let
him follow the winning strategy with the roles reversed!
Although it is known that there exists a winning strategy for Player
I in Chomp!, it is not known what that strategy is.
(You can play this game in
http://www.math.ucla.edu/ tom/Games/chomp.html

)

http://www.math.ucla.edu/~tom/Games/chomp.html
http://www.math.ucla.edu/~tom/Games/chomp.html


Sequential games in strategic form

So far we described sequential games as rooted trees T where

(a) vertices which were not leaves were labeled with players,

(b) arrows originating from a vertex were labeled with actions
available to the player corresponding to the vertex,

(c) arrows either pointed to leaves labeled with payoffs, or to
other vertices as in (a)

Definition. A strategy for player i in the sequential game
described by the rooted tree T is a function which takes any vertex
v labeled i to an action labeled on an arrow originating from v .



Example

Alice(v1)

(0, 0)

A

Bob(v2)

(2, 3)D

(−2, 2)E

B

Bob (v3)

(3, 5)F

(−6, 6)G

C



Alice has three strategies: [v1 → A], [v1 → B ], and [v1 → C ]. Bob
has four strategies strategies [v2 → D, v3 → F ], [v2 → D, v3 → G ],
[v2 → E , v3 → F ], [v2 → E , v3 → G ].
We can now give the strategic form of this game as follows

[D,F ] [D,G ] [E ,F ] [E ,G ]

A 0, 0 0, 0 0, 0 0, 0
B 2, 3 2, 3 -2, 2 -2, 2
C 3, 5 -6, 6 3, 5 -6, 6

Note that we have a pure-strategy Nash equilibrium (B , [D,G ]),
corresponding to our previous solution. There is also a new Nash
equilibrium (A, [E ,G ]).



Monopolist vs. new entrant

Bob has a monopoly in the market of wireless widgets, and Alice is
considering competing with Bob. If Alice does not enter the
market, her payoff is zero, and Bob makes a three billion pound
profit. If Alice enters the market, Bob can either fight her off by
reducing prices so that he makes zero profit and Alice loses a
billion pounds, or Bob can choose not to fight her and they both
end up making a profit of a billion pounds. Here is the tree
describing this sequential game

(−1, 0)

Bob

fight 44✐✐✐✐✐✐
do not fight

**❯❯
❯❯

❯❯
❯

Alice

enter 44❥❥❥❥❥❥

do not enter
))❙❙

❙❙
❙❙

(1, 1)

(0, 3)

We use backward induction to solve this game an we see that the
optimal strategies are for Alice to enter the market, and for Bob
not to fight her off.



Consider the strategic form of this game

fight do not fight

enter -1, 0 1, 1
do not enter 0, 3 0, 3

We have two Nash equilibria at (enter, do not fight) and at (do
not enter, fight). The first corresponds to the solution above, what
is the significance of the second? For Bob choosing to fight
amounts to announcing that, no matter what Alice does, he will
fight her off, but this is not credible as we know that it would be
foolish for Bob to fight Alice if she enters the market. His strategic
choice is not credible. The situation could be different if the game
were to repeat, e.g., if Bob would have to face multiple potential
competitors: now he may choose to fight to set an example to the
others.
So in sequential games, strategic Nash equilibria do not necessarily
correspond to feasible choice of strategy.



Subgame perfect Nash equilibria

Definition. Consider a sequential game with perfect information.
A strategy profile which is a Nash equilibrium of the game is
subgame perfect if its restriction to any subgame is also a Nash
equilibrium.



Example: Market monopolist and new entrant, revisited.
Recall the game

(−1, 0)

Bob

fight 44✐✐✐✐✐✐
do not fight

**❯❯
❯❯

❯❯
❯

Alice

enter 44❥❥❥❥❥❥

do not enter
))❙❙

❙❙
❙❙

(1, 1)

(0, 3)

whose strategic form is

fight do not fight

enter -1, 0 1, 1
do not enter 0, 3 0, 3

The game has two Nash equilibria: (enter, do not fight), (do not

enter, fight). There is only one subgame to consider here, the one
involving Bob’s decision to fight or not, and clearly, not fight is the
only Nash equilibrium. So (enter, do not fight) is a subgame
perfect Nash equilibrium, and (do not enter, fight) is not.



Question from Mock exam 2013-14

The Klingons (a belicose alien civilization) invade the planet
Romulus, and the Romulans need to decide whether to abandon
their planet or to stay put. If they stay and the Klingons fight,
both get a payoff of 0, whereas if the Klingons run away, Romulans
get 2 and Kilngons get 1. If the Romulans run away, they get 1
and the Klingons get 2.
Immediately after landing on Romulus, the Klingon commander
needs to decide whether to destroy her spaceships (and thus
eliminating the option to run away if Romulans decide to stay put).
(a) Assuming everyone is rational and well informed, what should
the Klingon commander do? Explain you reasoning in detail. (6
marks)
(b) Describe this situation in detail as a two-player game in
strategic form. (6 marks)
(c) Find a pure strategy Nash equilibrium of this game which is
not subgame perfect. (4 marks)



Solution

Klingon(K1)

Romulan(R1)

(2, 1)
Abandon

Klingon(K2) (0, 0)
FightStay

Burn

Romulan(R2)

(2, 1)
Abandon

Klingon(K3)

(0, 0)Fight

(1, 2)

Run

Stay

Dont Burn

If Klingons do burn their spaceships, they will have to fight at K2, and

so Romulans would prefer to abandon at R1 and Klingons will receive 2

units of utility. If they don’t burn their spaceships, when facing a

decision at K3 they will decide to run, and so Romulans will decide to

stay at R2, resulting in 0 units of utility for the Klingons. So the Klingon

general will order the spaceships burned.



Solution

Klingons’ strategies amount to choosing action a at at K1 and b at
K3 which we denote [a, b]. Romulans’ strategies amount to
choosing action c at R1 and d at R2 which we denote [c , d ]. The
game in strategic form is given by the following table, where
Klingons are the row players and Romulans are the column players

[Abandon, Abandon] [Abandon, Stay ] [Stay, Abandon] [Stay, Stay ]
[Burn, Run] 2,1 2, 1 0, 0 0, 0
[Burn, Fight] 2,1 2, 1 0, 0 0, 0
[DontBurn, Run] 2,1 1, 2 2, 1 1, 2
[DontBurn, Fight] 2,1 0, 0 2, 1 0, 0

It is easy to verify that ([Dont Burn, Fight], [Abandon, Abandon])
is a Nash equilibrium, but it is not subgame perfect. To see this
consider the subgame starting at K3: this strategy call for the
Klingons to fight, which is certainly not a Nash equilibrium as they
gain by running instead.



Theorem. The backward induction solutions of a finite game of
perfect information are subgame perfect Nash equilibria.
Proof. Let T be the tree of this game; we proceed by induction on
the rank r of T . Call the player who moves at the root of T player
I. If r = 1, T consist of a root and leaves only and player I will
choose the strategy with highest payoff. This is clearly a subgame
perfect Nash equilibrium.



Assume now that r > 1 and that the result holds for all games
with trees of rank less than r . Let G1, . . . ,Gn be the subgames
resulting after player I makes her move, and let T1, . . . ,Tn be the
corresponding trees. Note that the ranks of T1, . . . ,Tn are less
than r , and if we apply the induction hypothesis to each of
G1, . . . ,Gn we obtain backward induction solutions of these which
are subgame perfect Nash equilibria resulting in payoffs u1, . . . , un
for player I. Now player I needs to choose to move to one of the
subgames G1, . . . ,Gn, and she will choose the one with highest
payoff for her. This results in a Nash equilibrium strategy. Note
that a proper subgame of G is a subgame of one of G1, . . . ,Gn so
the strategy is subgame perfect, because its restriction to
G1, . . . ,Gn is subgame perfect and so its restriction to any
subgame is a Nash equilibrium.



The material after this slide will not be covered in
this year’s MAS348



Imperfect information and information sets

We now deal with games in which some of the actions of players
are not known to the other players: these are games of imperfect

information.

Example. Any game in strategic form is a game of imperfect
information: players do not know the other players actions until
the game is finished.
Definition. Let G be a sequential game represented by a tree T .
An information set for player i is a set of vertices V such that

(a) each vertex in V is labeled i ,

(b) the set of arrows starting at each vertex in V have identical
labels.

We partition all vertices which are not leaves into information sets,
i.e., every such vertex is in precisely one information set.
A sequential game with partial information has as its strategies for
player i the set of all functions which take an information set to an
arrow starting at a vertex in that information set.



Imperfect information and information sets

Note that in a game of perfect information all information sets
contain one vertex.
An information set of a sequential game is a set of vertices

belonging to one player which are indistinguishable to that player.

Example. Matching pennies as a sequential game.



Example: Alice and Bob compete, Part I
Alice Ltd. is considering entering a new market in Freedonia
dominated by Bob plc. If Alice enters the market, Bob can decide
to resist or accommodate Alice’s entrance. When Alice enters the
market, she can choose to do so aggressively (e.g., lots of
advertising) or not. If at the time of Alice’s second decision, she
knows Bob’s choice of strategy, we have a sequential game
described by the following tree.

Alice(v1)

(0, 5)don’t

Bob(v2)

Alice(v3)

(1, 2)not agg

(0, -3)agg
don’t

Alice(v4)

(-3, 1)not agg

(-2, -1)agg

resist

enter

The backward induction solution of this game is straightforward:
Alice will enter, Bob will not resist and Alice will not advertise



The normal form of this game is as follows:

resist don’t resist

enter, aggressive at v3,
aggressive at v4 (-2, -1) (0, -3)

enter, not aggressive at v3,
aggressive at v4 (-2, -1) (1,2)

enter, aggressive at v3,
not aggressive at v4 (-3, -1) (0, -3)

enter, not aggressive at v3,
not aggressive at v4 (-3, -1) (1, 2)

don’t enter, aggressive at v3,
aggressive at v4 (0,5) (0,5)

don’t enter, not aggressive at v3,
aggressive at v4 (0,5) (0,5)

don’t enter, aggressive at v3,
not aggressive at v4 (0,5) (0,5)

don’t enter, not aggressive at v3,
not aggressive at v4 (0,5) (0,5)



Example: Alice and Bob compete, Part II

Assume now that when Alice enters the market she does not know
whether Bob decided to resist or not; Alice makes her second
decision without knowing whether she is in vertex v3 or v4. This
implies that any of its strategies has the same values on v3 or v4,
and we can express this formally by saying that {v3, v4} is an
information set of Alice.

Alice(v1)

(0, 5)don’t

Bob(v2)

Alice(v3)

(1, 2)not agg

(0, -3)agg

don’t

Alice(v4)

(-3, 1)not agg

(-2, -1)agg

resist

enter



The normal from of this modified game is as follows:

resist don’t resist

enter, aggressive at v3,
aggressive at v4 (-2, -1) (0, -3)

enter, not aggressive at v3,
not aggressive at v4 (-3, -1) (1, 2)

don’t enter, aggressive at v3,
aggressive at v4 (0,5) (0,5)

don’t enter, not aggressive at v3,
not aggressive at v4 (0,5) (0,5)

We cant solve this game with backward induction anymore, but we
can find its Nash equilibria: any strategy profile where Alice stays
out and Bob resists is a Nash equilibrium, and there is an
additional one: ((enter, not aggressive at v3, not aggressive at v4)
, dont resist).



An example

Consider the following game with perfect information.

Alice(v1)

Bob(v4)

(0, 0)L′

(1, 2)R′D

Bob(v3)

(0, 4)L

(4, 0)R

M

Bob(v2)

(4, 0)L

(0, 4)R

U

We easily solve this game using backward induction and obtain a
solution ([D], [R ′]).



We now change the game and put vertices v2 and v3 in one
information set: now Bob doesn’t distinguish between these two
vertices. Now Alice can mix strategies U and M with equal
probabilities to produce an expected payoff of 2 > 1. Formally, the
game in strategic form is

L L′ L R′ R L′ R R′

U 4, 0 4, 0 0, 4 0, 4
M 0, 4 0, 4 4, 0 4, 0
D 0, 0 1, 2 0, 0 1, 2

Alice’s mixed strategy (1/2, 1/2, 0) dominates strategy D and we
reduce to the game

L L′ L R′ R L′ R R′

U 4, 0 4, 0 0, 4 0, 4
M 0, 4 0, 4 4, 0 4, 0



L L′ L R′ R L′ R R′

U 4, 0 4, 0 0, 4 0, 4
M 0, 4 0, 4 4, 0 4, 0

Now the first two and last two columns are indistinguishable, and if
we ignore duplication we end up with the game

L R

U 4, 0 0, 4
M 0, 4 4, 0

which has mixed-strategy Nash equilibrium ((1/2, 1/2), (1/2, 1/2)).



To define subgame perfect solutions of games without perfect
information we need to modify the concept of a subgame.
Definition. Let G be a sequential game represented by a tree T .
A subgame of G is a game corresponding to a subtree of T ′ of T
with the property that every information set is entirely in T ′ or
entirely outside T ′.



Example

Consider the following game.

Alice(v1)

(2, 6)B

Alice(v2)

Bob(v3)

(2, 0)R

(2,1)L
D

Bob(v4)

( 1, 4)R

(3, 4)L

U

A

({v3, v4} is an information set)



This game has two subgames: the game itself, and the game
corresponding to the subtree with root v2. The proper subgame
has strategic form:

L R

U 3, 4 1, 4
D 2, 1 2, 0

and has a Nash-equilibrium (U, L) resulting in payoff (3, 4). Now
at the root of the game Alice would choose to move A because
3 > 2. The resulting Nash Equilibrium (v1 → A, v2 → U,
v3, v4 → L) is subgame perfect.



A bargaining process

Alice and Bob will share £1, and Alice starts by issuing a
take-it-or-leave-it offer of 0 ≤ s ≤ 1. If Bob accepts, Alice gets
1− s, Bob gets s, otherwise both get 0. We apply backward
induction and see that Bob should accept any offer of s > 0. (This
is not observed in the real world!)
We change the game, so that if Bob rejects the offer, the game is
played again: now £δ is shared and Bob makes a take-it-or-leave it
offer of 0 ≤ t ≤ δ. Backward induction now shows Alice should
offer δ, and the payoffs are (1− δ, δ).
Assume now that there are three iterations, in which £1, δ, δ2 are
shared in the 1st, 2nd and third iterations. Alice will offer (almost)
0 in the last iteration, and receive δ2. Now Bob has to offer Alice
δ2 in the second iteration and he receives δ(1 − δ). Now Alice has
to offer Bob δ(1 − δ) and she receives 1− δ(1 − δ) = 1− δ + δ2.
What if this process can go on forever? Now payoffs are
(1/(1 + δ), δ/(1 + δ)), which for δ close to 1, is close to (1/2, 1/2).
What if Alice and Bob have different discount factors δ1 and δ2?



Example: The centipede game

Alice //

��
Bob //

��
Alice //

��
Bob //

��
Alice //

��
Bob //

��
(256, 64)

(4, 1) (2, 8) (16, 4) (8, 32) (64, 16) (32, 128)

The only pure strategy Nash equilibrium is Down at every node.

Alice //

��
Bob //

��
Alice //

��
Bob //

��
Alice //

��
Bob //

��
(11, 11)

(10, 0) (0, 10) (10, 0) (0, 10) (10, 10) (0, 10)

Now Right at every node is a (tenuous) subgame perfect Nash
equilibrium!


