MAS348 Game Theory
Solutions #2

1. There are no pure-strategy Nash equilibria, so we look for mixed-strategy Nash equilibria
of the form ((p7 1- p)a ((L 1- q))

If the row player mixes her strategies, then she is indifferent between her two possible
actions and so ¢ + 2(1 — q) = 2g + 1 — ¢ and hence ¢ = 1/2.

If the column player mixes his strategies, then he is indifferent between his two possible
actions and so 2p + 3(1 — p)=p + 5(1 — p) and hence p = 2/3.
2. The first game has payoff table

l r
L 0,1 1,0
R [3/4,1/40,1

and it is easy to see that there is no pure-strategy Nash equilibrium. We look for a mixed
Nash equilibrium (p, 1 — p) for Alice and (g, 1 — ¢g) for Bob. Bob’s pure strategies must be
indifferent to Alice’s NE strategy , i.e., p+1/4x (1—p) = 1 —p and Alice’s pure strategies
must be indifferent to Bobs’s NE strategy , i.e., 1 — g = 3/4 x q. We obtain p = 3/7 and
g = 4/7. Notice that Alice kicks more often to the Right, even though she kicks better to
the Left.

The second game has payoff table

1 r
L| 0.8,0.2 1,0
R|la,1—a|038,0.2

If a« < 0.8, Ll is a pure-strategy Nash equilibrium. If o = 0.8 both LI and Rl are pure-
strategy Nash equilibria. With p and ¢ as above, we look for mixed NE and obtain the
conditions 0.2p+ (1 — a)(1 —p) = 0.2(1 — p) and 0.8¢ + (1 — ¢) = ag + 0.8(1 — ¢) giving
p=(ba—4)/(5a—3) and ¢ = 1/(ba — 3). Now ¢ is a probability when o > 0.6 and for
these o p is a probability when o > 0.8. We conclude that for 0.8 < a < 1 we have a

mixed NE
S5aa — 4 1 1 S5a — 4
50 —3'5a—3) " \ba—3"5a—-3/"

3. Denote the game (S, 52, ui,us). Let (p,q) be a mixed-strategy Nash-equilibrium, and
suppose that pure strategies s and t are in the support of p and that s dominates ¢. Since
s dominates t, uy(s,z) > us(t, z) for all z € Sy and since for all z € Sy ¢(2) > 0 and some
of these values are positive, > ..o q(2)ui(s, 2) > > cq q(2)ui(t, 2).

On the other hand, if s, are in the support of p, the Indifference Principle implies
22652 q(z)ui(s, z) = 22652 q(z)uq(t, z), a contradiction.
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4. # Lete,...,e, denote the standard column vectors. Notice that the Indifference Principle
implies that the values of p? U, e; are the same for all 1 < i < n and that the values of e? U, ¢
are the same for all 1 < j < n, i.e., there exist constants c;, c; such that p’ U; = cleTZ and
Usq = coe where e = e; + - -+ + e,. We can now write p? = ¢;e”U; ! and ¢ = ;U 'e. To
completely determine p and ¢ add the condition that these are probability vectors: compute
p" = e"Urt and ¢ = Uy 'e'; now take p = p'/(ph + - + 1) and ¢ = ¢/ (¢} + - + ¢})-
These are the only possible Nash equilibrium with all strategies in their support (and give
a Nash equilibrium if and only if these p and ¢ are probability vectors).

5. # This game is described by a table with rows and columns indexed by 0,...,n — 1. The
payoffs in entry (i, j) are
(=i, N —j) ifi<y
(—1,—1) ifi=y
(N —i,—j) ifi>j
The fact that the row player mixes her strategies implies that each of her pure strategies
does equally well against the column player’s mixed strategy, i.e., the values of

(N=@) xpo+ (N =) xpr+-+(N—1) Xpio1 —i Xpi =1 X piy1 —+ — 1 X Pn-1

are the same for all 0 < i <n —1.

If we write this system for N =5 we get the system of equations

0 0 0 0 0 o
4 -1 -1 -1 -1 n
3 3 -2 —2 -2 Sl =0
2 2 2 -3 -3 :
1 1 1 1 -4 Da

which has a solution pg=p; =---=pys=1.

To see that this is a solution for general N we verify that

(N=i)x 14+ (N=i)x 14+ (N—=i)x1—ix1—ix1—---—ix1 = (N—i)i—i(N —i) = 0.

We make this solution into probabilities by dividing by n and we obtain a mixed NE

(1/n,...;1/n),(1/n,...,1/n).

6. We first show that there is no pure-strategy symmetric Nash equilibrium: if no one calls
for help, then one of them can do so and receive a strictly higher payoff of v —c > 0
and if all call, then any one can deviate by not calling and receive a strictly higher payoff
v > v — c. (Note that the situation in which precisely one person calls for help is an
asymmetric Nash equilibrium).

Thus, a symmetric equilibrium, if one exists, should be in mixed strategies. Let p be
the probability that a person does not call for help. Consider bystander is payoff of this
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10.

11.

mixed strategy prole: when she doesn’t call for help, her expected payoff is p"~1 x 0+ (1 —
p" 1) xv = (1-p" 1), and when she does call for help, her payoff is v —c. The fact that
bystander ¢ mixes her strategies implies that she is indifferent between these two, hence
(1—p" Yo =v—rc,and p = (¢/v)Y. The probability that no one calls for help is
pn — (C/,U)n/(n—l).

The only saddle points (and pure strategy Nash equilibria) occur at (1,2) and (3,2).

There is no saddle point. To answer (b) we compute

1 -1 1713 1/3
[1/5,2/5,2/5] | =1 0 1 1/3 | =[1/5,2/5,2/5] 0 =3/15
2 =10 1/3 1/3
Since
1 -1 1
[1/5,2/5,2/5] { =1 0 1 | =[3/5,—-3/5,3/5]
2 =10

the column player plays his second strategy.

The gain for the row player from each of his pure strategies is —3/5, so any (pure or mixed)
strategy fares equally well.

Notice that u(sq,t1) < u(sy,t) for all t € T and in particular u(sy, t1) < u(sy, t2). Similarly
u(s,ta) < ulsq,ty) for all s € S and in particular u(sy, ty) < u(sa,te). Similarly u(ss,ts) <
u(sg,t) for all t € T and in particular u(ss, ta) < u(s2,t1). Finally u(s,t;) < wu(sy,t1)
for all s € S and in particular u(ss,t1) < u(sy,t;). Putting everything together we get
(s, t1) < ulsy, ta) < ulsg,te) < u(se,ty) < u(sy,tr) thus all these are equal.

Now u(s,te) < u(sq,ta) = u(sy,tz) for all s € S and u(sy,t) > u(sy,t1) = u(s,ty) for all
teT.

The mixed strategy (1/2,1/2,0) and the pure strategy C' guarantee the row and column
players, respectively, an expected payoff of 0.

We deduce that the value v of the game satisfies 0 > v > 0 and hence v = 0. The
row player’s mixed strategy (pi, p2, ps) yields —0ps against against C', and so it cannot be
optimal unless p3 = 0. If p3 = 0, the strategy (1/2,1/2,0) is the only one which yields at
least 0 against A and B.

To find the column player optimal strategies we demand that they yield at most 0 against
[, IT and 111, ie., g1 — g2 < 0, —q1 + g2 < 0 and a(q1 + ¢2) — dg3 < 0. This, together with
G+ q@+q=1gives 4 = ¢ < §/2(a+ 9). Thus the row player has a unique (mixed)
optimal strategy whereas the set of optimal strategies for the column player has one pure
strategy and infinitely many mixed strategies.
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13.

There are no dominated strategies, nor is there an optimal pure strategy profile.

Using our methods from cooperative games, we look for a row mixed strategy (z,0,1 — x)
which makes Bob indifferent between A and B, i.e., x = —x + 2(1 — z), and we obtain
p* =(1/2,0,1/2). We now look for a column mixed strategy (y, 1 —y, 0) which makes Alice
indifferent between I and III, i.e., y — (1 —y) = 2(1 — y) and we obtain ¢* = (3/4,1/4,0).

To verify that the strategy profile is optimal we compute

1 -1 27 7[3/4 1/2
—2 0 1|]|1/4|=]|-3/2
0 2 -1 0 1/2

and verify that p*(I7) = 0. We now compute

1 -1 2
[1/2 0 1/2]| -2 0 1|=[1/2 1/2 1/2]
0 2 -1

and since max{1/2,—3/2,1/2} = min{1/2,1/2,1/2}, this strategy profile is optimal.
Note that 07 Ao = —A. If p is an optimal strategy for both players,

(op)T Aop = pTo" Aop = —p"Ap =10

since the value of the game is zero. Thus p' = op = (Pp, Pn_1,.-.,p1)’ is also optimal for
both players and we take ¢ = (p + p')/2: note that p'" Ap = (p'" Ap)T = pATp = —pAp/
and
T 1 T 1T 47 T A,/ 1T
¢ Ag=7 <p Ap+p~ Ap +p Ap' +p Ap) =0.

14. (a) The 100 x 100 matrix A of this game looks like

ie. its (i,7) entry is 0 if i = j, 1if i =j+1, =2ifi > 5741, =1 if j =i+ 1, and 2 if
J > i+ 1. This game is symmetric because the players have identical strategy sets and the
matrix A describing this game satisfies AT = —A.
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(b) Row 1 dominates all rows from 4 to 100, and column 1 dominates all columns from 4
to 100. After eliminating these we are left with the 3 x 3 matrix

(c) Exercise shows that both payers have same optimal strategy of the form p =
(t,1 —2¢t,t)T and to find it and that the game has value 0. So we need to solve Bp = 0
which gives p = (1/4,1/2,1/4).

# (a) The matrix A for this zero-sum game is lower triangular with 1 on the diagonal, —1
below the diagonal and 0 above it.

(b) Let (p, q¢) be an optimal strategy profile and assume that all pure strategies occur with
positive probability. The Indifference Principle implies

(

" =V (p—p—pa =V
—q1+ ¢ =V P2—pP3— =Dy = V
—q1 — ¢2+qs3 =V P3—DPs— " —Dpyp = V
| 0@~ GB— a1t g = V| Da =V

where V' is the value of the game. The solutions of these are V' = 2/n(n + 1), ¢ =
(V,2V,...,nV) and p = (nV,(n — 1)V,..., V). We note that p € A¥ and ¢ € A°.

(c) Let u be the payoff function of this game. Since we used the Indifference Principle to
find p and ¢, we have u(p,1) = u(p,2) = u(p,3) = V and u(1,q) = u(2,q) = u(3,9) = V.
Now the value of the game is at least min{u(p, 1), u(p,2),...,u(p,A)} = V and at most
max{u(i q), u(ﬁ, q),...,u(n,q)} =V so the value of the game is indeed V and the strategy
profile in (b) is indeed optimal.



