
MAS348 Game Theory
Solutions #2

1. There are no pure-strategy Nash equilibria, so we look for mixed-strategy Nash equilibria
of the form ((p, 1− p), (q, 1− q)).

If the row player mixes her strategies, then she is indifferent between her two possible
actions and so q + 2(1− q) = 2q + 1− q and hence q = 1/2.

If the column player mixes his strategies, then he is indifferent between his two possible
actions and so 2p+ 3(1− p)=p+ 5(1− p) and hence p = 2/3.

2. The first game has payoff table

l r
L 0,1 1,0
R 3/4,1/4 0,1

and it is easy to see that there is no pure-strategy Nash equilibrium. We look for a mixed
Nash equilibrium (p, 1− p) for Alice and (q, 1− q) for Bob. Bob’s pure strategies must be
indifferent to Alice’s NE strategy , i.e., p+1/4× (1−p) = 1−p and Alice’s pure strategies
must be indifferent to Bobs’s NE strategy , i.e., 1 − q = 3/4× q. We obtain p = 3/7 and
q = 4/7. Notice that Alice kicks more often to the Right, even though she kicks better to
the Left.

The second game has payoff table

l r
L 0.8,0.2 1,0
R α, 1− α 0.8, 0.2

If α < 0.8, Ll is a pure-strategy Nash equilibrium. If α = 0.8 both Ll and Rl are pure-
strategy Nash equilibria. With p and q as above, we look for mixed NE and obtain the
conditions 0.2p+ (1− α)(1− p) = 0.2(1− p) and 0.8q + (1 − q) = αq + 0.8(1− q) giving
p = (5α − 4)/(5α− 3) and q = 1/(5α− 3). Now q is a probability when α ≥ 0.6 and for
these α p is a probability when α ≥ 0.8. We conclude that for 0.8 ≤ α ≤ 1 we have a
mixed NE (

5α− 4

5α− 3
,

1

5α− 3

)
,

(
1

5α− 3
,
5α− 4

5α− 3

)
.

3. Denote the game (S1, S2, u1, u2). Let (p, q) be a mixed-strategy Nash-equilibrium, and
suppose that pure strategies s and t are in the support of p and that s dominates t. Since
s dominates t, u1(s, z) > u1(t, z) for all z ∈ S2 and since for all z ∈ S2 q(z) ≥ 0 and some
of these values are positive,

∑
z∈S2

q(z)u1(s, z) >
∑

z∈S2
q(z)u1(t, z).

On the other hand, if s, t are in the support of p, the Indifference Principle implies∑
z∈S2

q(z)u1(s, z) =
∑

z∈S2
q(z)u1(t, z), a contradiction.
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4. # Let e1, . . . , en denote the standard column vectors. Notice that the Indifference Principle
implies that the values of pTU1ei are the same for all 1 ≤ i ≤ n and that the values of eTj U1q
are the same for all 1 ≤ j ≤ n, i.e., there exist constants c1, c2 such that pTU1 = c1e

T and
U2q = c2e where e = e1 + · · ·+ en. We can now write pT = c1e

TU−1
1 and q = c2U

−1
2 e. To

completely determine p and q add the condition that these are probability vectors: compute
p′T = eTU−1

1 and q′ = U−1
2 et; now take p = p′/(p′1 + · · ·+ p′n) and q = q′/(q′1 + · · ·+ q′n).

These are the only possible Nash equilibrium with all strategies in their support (and give
a Nash equilibrium if and only if these p and q are probability vectors).

5. # This game is described by a table with rows and columns indexed by 0, . . . , n− 1. The
payoffs in entry (i, j) are 




(−i, N − j) if i < j
(−i,−i) if i = j
(N − i,−j) if i > j

The fact that the row player mixes her strategies implies that each of her pure strategies
does equally well against the column player’s mixed strategy, i.e., the values of

(N − i)× p0 + (N − i)× p1 + · · ·+ (N − i)× pi−1 − i× pi − i× pi+1 − · · · − i× pN−1

are the same for all 0 ≤ i ≤ n− 1.

If we write this system for N = 5 we get the system of equations



0 0 0 0 0
4 −1 −1 −1 −1
3 3 −2 −2 −2
2 2 2 −3 −3
1 1 1 1 −4







p0
p1
...
p4


 = 0

which has a solution p0 = p1 = · · · = p4 = 1.

To see that this is a solution for general N we verify that

(N−i)×1+(N−i)×1+· · ·+(N−i)×1−i×1−i×1−· · ·−i×1 = (N−i)i−i(N−i) = 0.

We make this solution into probabilities by dividing by n and we obtain a mixed NE
(1/n, . . . , 1/n), (1/n, . . . , 1/n).

6. We first show that there is no pure-strategy symmetric Nash equilibrium: if no one calls
for help, then one of them can do so and receive a strictly higher payoff of v − c > 0
and if all call, then any one can deviate by not calling and receive a strictly higher payoff
v > v − c. (Note that the situation in which precisely one person calls for help is an
asymmetric Nash equilibrium).

Thus, a symmetric equilibrium, if one exists, should be in mixed strategies. Let p be
the probability that a person does not call for help. Consider bystander is payoff of this
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mixed strategy prole: when she doesn’t call for help, her expected payoff is pn−1×0+(1−
pn−1)× v = (1− pn−1)v, and when she does call for help, her payoff is v− c. The fact that
bystander i mixes her strategies implies that she is indifferent between these two, hence
(1 − pn−1)v = v − c, and p = (c/v)1/(n−1). The probability that no one calls for help is
pn = (c/v)n/(n−1).

7. The only saddle points (and pure strategy Nash equilibria) occur at (1, 2) and (3, 2).

8. There is no saddle point. To answer (b) we compute

[1/5, 2/5, 2/5]




1 −1 1
−1 0 1
2 −1 0






1/3
1/3
1/3


 = [1/5, 2/5, 2/5]




1/3
0
1/3


 = 3/15

Since

[1/5, 2/5, 2/5]




1 −1 1
−1 0 1
2 −1 0


 = [3/5,−3/5, 3/5]

the column player plays his second strategy.

9. The gain for the row player from each of his pure strategies is −3/5, so any (pure or mixed)
strategy fares equally well.

10. Notice that u(s1, t1) ≤ u(s1, t) for all t ∈ T and in particular u(s1, t1) ≤ u(s1, t2). Similarly
u(s, t2) ≤ u(s2, t2) for all s ∈ S and in particular u(s1, t2) ≤ u(s2, t2). Similarly u(s2, t2) ≤
u(s2, t) for all t ∈ T and in particular u(s2, t2) ≤ u(s2, t1). Finally u(s, t1) ≤ u(s1, t1)
for all s ∈ S and in particular u(s2, t1) ≤ u(s1, t1). Putting everything together we get
u(s1, t1) ≤ u(s1, t2) ≤ u(s2, t2) ≤ u(s2, t1) ≤ u(s1, t1) thus all these are equal.

Now u(s, t2) ≤ u(s2, t2) = u(s1, t2) for all s ∈ S and u(s1, t) ≥ u(s1, t1) = u(s1, t2) for all
t ∈ T .

11. The mixed strategy (1/2, 1/2, 0) and the pure strategy C guarantee the row and column
players, respectively, an expected payoff of 0.

We deduce that the value v of the game satisfies 0 ≥ v ≥ 0 and hence v = 0. The
row player’s mixed strategy (p1, p2, p3) yields −δp3 against against C, and so it cannot be
optimal unless p3 = 0. If p3 = 0, the strategy (1/2, 1/2, 0) is the only one which yields at
least 0 against A and B.

To find the column player optimal strategies we demand that they yield at most 0 against
I, II and III, i.e., q1 − q2 ≤ 0, −q1 + q2 ≤ 0 and α(q1 + q2)− δq3 ≤ 0. This, together with
q1 + q2 + q3 = 1 gives q1 = q2 ≤ δ/2(α + δ). Thus the row player has a unique (mixed)
optimal strategy whereas the set of optimal strategies for the column player has one pure
strategy and infinitely many mixed strategies.
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12. There are no dominated strategies, nor is there an optimal pure strategy profile.

Using our methods from cooperative games, we look for a row mixed strategy (x, 0, 1− x)
which makes Bob indifferent between A and B, i.e., x = −x + 2(1 − x), and we obtain
p∗ = (1/2, 0, 1/2). We now look for a column mixed strategy (y, 1−y, 0) which makes Alice
indifferent between I and III, i.e., y − (1− y) = 2(1− y) and we obtain q∗ = (3/4, 1/4, 0).

To verify that the strategy profile is optimal we compute




1 −1 2
−2 0 1
0 2 −1






3/4
1/4
0


 =




1/2
−3/2
1/2




and verify that p∗(II) = 0. We now compute

[
1/2 0 1/2

]



1 −1 2
−2 0 1
0 2 −1


 =

[
1/2 1/2 1/2

]

and since max{1/2,−3/2, 1/2} = min{1/2, 1/2, 1/2}, this strategy profile is optimal.

13. Note that σTAσ = −A. If p is an optimal strategy for both players,

(σp)TAσp = pTσTAσp = −pTAp = 0

since the value of the game is zero. Thus p′ = σp = (pn, pn−1, . . . , p1)
T is also optimal for

both players and we take q = (p + p′)/2: note that p′TAp = (p′TAp)T = pATp′ = −pAp′

and

qTAq =
1

4

(
pTAp+ p′

T
Ap′ + pTAp′ + p′

T
Ap

)
= 0.

14. (a) The 100× 100 matrix A of this game looks like




0 −1 2 2 2 . . .
1 0 −1 2 2 . . .
−2 1 0 −1 2 . . .
−2 −2 1 0 −1 . . .
−2 −2 −2 1 0 . . .

. . .




i.e., its (i, j) entry is 0 if i = j, 1 if i = j + 1, −2 if i > j + 1, −1 if j = i + 1, and 2 if
j > i+1. This game is symmetric because the players have identical strategy sets and the
matrix A describing this game satisfies AT = −A.
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(b) Row 1 dominates all rows from 4 to 100, and column 1 dominates all columns from 4
to 100. After eliminating these we are left with the 3× 3 matrix

B =




0 −1 2
1 0 −1
−2 1 0




(c) Exercise 13 shows that both payers have same optimal strategy of the form p =
(t, 1 − 2t, t)T and to find it and that the game has value 0. So we need to solve Bp = 0
which gives p = (1/4, 1/2, 1/4).

15. # (a) The matrix A for this zero-sum game is lower triangular with 1 on the diagonal, −1
below the diagonal and 0 above it.

(b) Let (p, q) be an optimal strategy profile and assume that all pure strategies occur with
positive probability. The Indifference Principle implies





q1 = V
−q1 + q2 = V
−q1 − q2 + q3 = V

...
−q1 − q2 − q3 − . . . qn−1 + qn = V





p1 − p2 − · · · − pn = V
p2 − p3 − · · · − pn = V
p3 − p4 − · · · − pn = V

...
pn = V

where V is the value of the game. The solutions of these are V = 2/n(n + 1), q =
(V, 2V, . . . , nV ) and p = (nV, (n− 1)V, . . . , V ). We note that p ∈ ∆R and q ∈ ∆C .

(c) Let u be the payoff function of this game. Since we used the Indifference Principle to
find p and q, we have u(p, 1̂) = u(p, 2̂) = u(p, 3̂) = V and u(1̂, q) = u(2̂, q) = u(3̂, q) = V .
Now the value of the game is at least min{u(p, 1̂), u(p, 2̂), . . . , u(p, n̂)} = V and at most
max{u(1̂, q), u(2̂, q), . . . , u(n̂, q)} = V so the value of the game is indeed V and the strategy
profile in (b) is indeed optimal.
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